# A-level PHYSICS <br> (7408/3BC) 

Paper 3 - Section B (Engineering Physics)

## Specimen 2014 Morning Time allowed: 2 hours

## Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.


## Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.


## Information

- The maximum mark for this section is 35 .

Please write clearly, in block capitals, to allow character computer recognition.
Centre number $\square \square \square \square \square$ Candidate number $\square \square \square \square$
Surname


Forename(s) $\square$

Candidate signature

Section B
Answer all questions in this section.

| 0 | 1 |
| :--- | :--- |

Figure 1 shows a satellite with three solar panels folded in close to the satellite's axis for the journey into space in the hold of a cargo space craft.

Figure 1
Figure 2


Just before it is released into space, the satellite is spun to rotate at $5.2 \mathrm{rad} \mathrm{s}^{-1}$. Once released, the solar panels are extended as shown in Figure 2.
moment of inertia of the satellite about its axis with panels folded $=110 \mathrm{~kg} \mathrm{~m}^{2}$ moment of inertia of the satellite about its axis with panels extended $=230 \mathrm{~kg} \mathrm{~m}^{2}$
$\square$ 1

State the law of conservation of angular momentum.
$\qquad$
The total tine or momentum of a system remains constant, provided no extern formeereacts on the system. linear $\rightarrow$ angular force $\rightarrow$ torque

| $\mathbf{0}$ | $\mathbf{1} .2$ | The total mass of the satellite is 390 kg and the solar panels each have a mass of |
| :--- | :--- | :--- | 16 kg .

State what is meant by moment of inertia and explain why extending the solar panels changes the moment of inertia of the satellite by a large factor.

$$
I=m r^{2} \quad[3 \text { marks }]
$$

- Moment of inertia is the sum of every $m r^{2}$ for each point mass $m$ the body consists of, at vadius $r \checkmark$
- Some of the satellite's mass moves to a larger radius $\checkmark$ - $r$ is squared, so a small $r$ increase gives a large $I$ increase
 the solar panels folded. State an appropriate unit for your answer. $(\rho=m \mathrm{~V})$


OR Nos OR $\operatorname{kgm}^{2} \mathrm{~s}^{-1}$

| 0 | 1 | 4 |
| :--- | :--- | :--- | extended.

$$
\begin{array}{r}
\omega=? \quad \begin{aligned}
& L=I \omega \\
& \omega=\frac{L}{I}=\frac{572}{230}=2.48896 \\
& \simeq 2.49 \\
& \text { angular speed }=2.49^{V} \mathrm{radss}^{-1}
\end{aligned}
\end{array}
$$

Figure 3 shows an experiment to determine the moment of inertia of a bicycle wheel. One end of a length of strong thread is attached to the tyre. The thread is wrapped around the wheel and a 0.200 kg mass is attached to the free end. The wheel is held so that the mass is at a height of 1.50 m above the floor. The wheel is released and the time taken for the mass to reach the floor is measured.

Figure 3


| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{1}$ State the energy transfers that take place from the moment the wheel is released until |
| :--- | :--- | :--- | the mass hits the floor.

-The mass loses gravitational potential energy as it mores towards the floor

Increases rotational kinetic energy of whee and linear linetic energy of mass $\checkmark$ Air resistance causes the intend energy of the air to increase and friction increases the internal energy of the wheel bearing $\checkmark$

| 0 | 2 | 2 |
| :--- | :--- | :--- | Calculations based on the measurements made show that at the instant the mass hits the floor:

- the speed of the mass is $2.22 \mathrm{~m} \mathrm{~s}^{-1}$
- the wheel is rotating at $6.73 \mathrm{rad} \mathrm{s}^{-1}$ - OKE $=\frac{1}{2} I \omega^{2}$
- the wheel has turned through an angle of 4.55 rad from the point of release.

$$
W=T \theta
$$

A separate experiment shows that a constant frictional torque of $7.50 \times 10^{-3} \mathrm{~N} \mathrm{~m}$ acts on the wheel when it is rotating.

By considering the energy changes in the system, show that the moment of inertia of the wheel about its axis is approximately $0.1 \mathrm{~kg} \mathrm{~m}^{2}$.


| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ When the mass hits the floor the thread is released from the wheel. |
| :--- | :--- | :--- | :--- |

Calculate the angle turned through by the wheel before it comes to rest after the thread is released.


Alterative

[2 marks] $v^{2}=u^{2}+2 a s$
$\omega_{2}^{2}=\omega_{2}^{2}+2 a \theta$,
 of inertia

$$
\frac{1}{2} I \omega^{2}=T \theta
$$

| $\mathbf{0}$ | $\mathbf{3}$ A single-cylinder air motor running on compressed air has the theoretical indicator |
| :--- | :--- | :--- | diagram shown in Figure 4.

Figure 4


- From B to $\mathbf{C}$ the high-pressure air pushes a piston down a cylinder, doing work.
- At C, a valve cuts off the supply of air and the air in the motor expands adiabatically to $\mathbf{D}$, pushing the piston further down the cylinder.
- At $\mathbf{D}$ an exhaust valve opens and from $\mathbf{D}$ to $\mathbf{E}$ to $\mathbf{A}$ the air is exhausted to the surrounding atmosphere as the piston moves up the cylinder.
- At A the exhaust valve closes and the inlet valve opens connecting the cylinder to the supply of compressed air.

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{1}$ Use the first law of thermodynamics to explain why the temperature falls during the |
| :--- | :--- | :--- | adiabatic change between $\mathbf{C}$ and $\mathbf{D}$.

[3 marks]

energy transferred

- $W=-\Delta U \quad\{Q=0 \text {, as the process is adiabatic }\}_{V}$
- If $W$ is positive, $\Delta U$ is negative, so internal every direness internal energy is indicated by temperature, so tempenture

| 0 | 3 |
| :--- | :--- | $\mathbf{2}$ In practice the cut-off point $\mathbf{C}$ can be altered without changing points $\mathbf{A}, \mathbf{B}$ and $\mathbf{E}$.

Figure 5 shows the theoretical indicator diagram of the motor when the air is admitted for the complete stroke, so that the inlet valve opens at $\mathbf{A}$ and closes at $\mathbf{X}$. The exhaust valve opens at $\mathbf{X}$ and closes at $\mathbf{A}$.

Figure 5


Compare Figures 4 and 5 and discuss the effect this change has on the operation of the motor, assuming that it continues to run at about the same speed and with air at the same pressure.
You should include in your answer how the change affects:

- the rate of consumption of air
- the output torque and power
- the overall efficiency.

Rate of Consumption of Air

- Air enters foon $\mathrm{A}_{5} \mathrm{C}$ on figure 4 , but $A$ to $X$ on figure 5 - Aren under this vegion doubles, so eneragy (and therefore input power) doubles - Air consunption is approximately dabbled
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Output Torque and Power

- Area is bigger by approximately $25 \%$ in figure 5 , so output power is also $\sim 25 \%$ higher
- Average pressure is higher in figure 5, so larger torque

$$
\text { Power }=\text { Force } \times \text { Velocity } \quad(P=F)
$$

Power = Torque $\times$ Angular Velocity $(P=T \omega)$

- Torque is proportional to power, so increase in output power is also caused by torque increase

Efficiency

$$
\begin{aligned}
& \cdot \text { Efficiency }=\frac{\text { Useful a Input Power }}{\text { Total Input Power }} \\
& \cdot \frac{1.25 \times P_{\text {out }}}{2 \times P_{\text {in }}}=\frac{1.25}{2} \times \frac{P_{\text {out }}}{P_{\text {in }}}=\frac{1.25}{2} \times \text { Efficiency } \\
& \quad \frac{1.25}{2}<1 \text { so efficiency decreases }
\end{aligned}
$$

Figure 6 shows the actual indicator diagram for the air motor.
Figure 6


| $\mathbf{0}$ | $\mathbf{3}$. $\mathbf{3}$ The motor was running at 20 cycles per second when the indicator diagram was |
| :--- | :--- | :--- | :--- | recorded.

Determine the indicated power of the motor.

- Work done shown by area of indicator diegrann $\sqrt{[4}$ marks]
- 27 la ge squares counted $\checkmark$
$\cdot 27 \times 2.5=67.5 \mathrm{~J} \mathrm{~J}$
$-67.55 \times 205^{-1}=1350 \mathrm{~W}$

$$
\text { power }=1350 \mathrm{w}
$$

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{4}$ Explain why the indicated power for the air motor is different from the output power. |
| :--- | :--- | :--- | :--- |

$\qquad$ the cylinder and piston, and dis is not accounted for in the indicated power. $f$.
$T_{1}=$ tempeature of sowre
$\bar{t}$ tempeature of ink

$$
\begin{aligned}
\frac{1450-310}{1450}=\frac{1140}{1450}=0.79 & =79 \% \\
& \simeq 80 \%
\end{aligned}
$$

| $\mathbf{0}$ | $\mathbf{4} \cdot \mathbf{2}$ The company makes the following two claims about the performance of the plant: |
| :--- | :--- | :--- |

- Claim 1 When consuming biogas of calorific value $55.5 \mathrm{MJ} \mathrm{m}^{-3}$ at the rate of $5.00 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the electrical power output will be 210 kW .
- Claim 2 At the same time the engine will provide heating for greenhouses at the rate of at least 55.0 kW .

Discuss the extent to which the company's claims are justified.
Claim 1
$\cdot 55.5 \mathrm{MJ}^{-3} \times 5.00 \times 10^{-3} \mathrm{~m}^{3} \mathrm{~s}^{-1}=0.278 \mathrm{MJ}^{-3} \mathrm{~m}^{3} \mathrm{~s}^{-1}$

- $\frac{210}{278}=0.76=76 \% ~ J ~$ theoretical efficiency, so the claim inst justified. (Claim would be just fifidid it the engine russ at nuximene efficiency)

Claim 2
$.278-210=68 \mathrm{~kW}$

- $55 \mathrm{~kW}<68 \mathrm{~kW}$, so it is possible for 55 kW to be available for heating $V$ ill give more than 68 kW , so 55 kW is possible) V
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

END OF QUESTIONS


